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Statistical analysis related to impulse tests for self-restoring insulation
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For dielectric tests with impulse voltage, some statistical methods with the step-up procedure have been
recently proposed. In the present paper, the methods are reconsidered from the viewpoint of statistical
independence concerning disruptive discharges. As a result, modified methods with the step-up procedure
or with the up-and-down procedure are proposed for self-restoring insulation, and it is shown that they have
good properties in the maximum likelihood estimation for the mean and the standard deviation of a normal
distribution.
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1. Introduction

We are concerned with statistical methods dealing
with dielectric tests with impulse voltage. The conven-
tional methods are given by International Electrotech-
nical Commission (IEC) (1) or IEEE (2). On the other
hand, two different types of methods with the step-up
procedure have been recently proposed in a series of the
papers by Hirose (3)∼(8).

The two types of methods are the step-up method,
which was originally proposed in the papers (3) (4), and
the new step-up method (5)∼(8). In the methods, each
result in voltage stress applications is supposed to be
statistically independent under an underlying probabil-
ity distribution, regardless of whether a disruptive dis-
charge occurs or not. This assumption is the same as
that in the up-and-down method (1) (2), which is for self-
restoring insulation. In spite of that, these methods have
been proposed for non-self-restoring insulation.

Self-restoring insulation like liquid or gaseous electri-
cal insulation is the insulation that completely recov-
ers its insulating properties after a disruptive discharge
caused by a voltage stress application (1) (2). In addi-
tion, after it recovers, another disruptive discharge can
be caused by the application of another voltage stress
independent of the voltage stress when the previous dis-
ruptive discharge occurred. On the other hand, non-
self-restoring insulation like solid electrical insulation is
the insulation that loses its insulating properties, or does
not recover them completely, after a disruptive discharge
caused by a voltage stress application (1) (2). Thus, we
can see that there is a big difference in influence by a
voltage application between self-restoring insulation and
non-restoring insulation.

Now, a question arises: ”is the step-up method (not
the step-up procedure itself) really appropriate for non-
self-restoring insulation?” Our first aim is to consider
this question. After the consideration, our second aim
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is to disclose merits and demerits of the step-up method
as a method for self-restoring insulation.

In the papers (5) (9), Hirose has pointed out that with
the recent improvement of voltage measuring instru-
ments, we can observe a voltage at the moment when
a disruptive discharge occurs. For this, he has pro-
posed the new step-up method and the new up-and-
down method and has shown the superiority of them
to the step-up method and the up-and-down method,
respectively. The new methods, however, have a techni-
cal defect. Although a disruptive discharge can typically
occur after the peak of an impulse voltage, it is not dealt
with appropriately in the methods. (We will see details
later.) Thus, our third aim is to propose a modified step-
up method and a modified up-and-down method, which
inherit merits of the new step-up method and the new
up-and-down method and avoid the technical defect in
them.

Throughout the present paper we use the word
“method” to mean a combination of a test procedure
and the way of analysis of test results, such as the up-
and-down method.

In Section 2 we will introduce the step-up, the up-
and-down, the new step-up and the new up-and-down
methods and give some remarks about them. In Section
3 the step-up method and the up-and-down method will
be compared in the asymptotic or empirical errors. In
Section 4 a modified step-up method and a modified up-
and-down method will be proposed and investigated. In
Section 5, conclusions will be given. An iterative formula
to get estimates and a formula to calculate an observed
information matrix will be given in Appendix.

2. Preliminaries

We introduce the test procedures and the likelihood
functions of the step-up, the up-and-down, the new step-
up and the new up-and-down methods, respectively, and
state some remarks.

2.1 Step-up method The test procedure pro-
ceeds as follows (3)∼(8).

i) Decide the first voltage level U1, a small amount
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4U and a maximum number m of voltage stress
applications at a voltage level. Here, U1 should
be sufficiently low such that almost no disruptive
discharge occurs at the level.

ii) If no disruptive discharge occurs when substan-
tially equal voltage stresses are applied m times
at the voltage level U1, set the next voltage level
U2 at U1 + 4U . Similarly increase the succeed-
ing voltage levels U3, U4, ... until a disruptive
discharge occurs.

iii) Perform ii) n times.
The likelihood function has been given as follows

(3)∼(8). For the jth disruptive discharge (1 ≤ j ≤ n),
denote by δj and mj an integer for which a disruptive
discharge occurs at Uδj and the number of voltage stress
applications at the level. If F (U ; θ) is the discharge
probability distribution function (θ denotes a vector of
parameters), the likelihood function becomes:

L =
n∏

j=1

F (Uδj ; θ)[1 − F (Uδj ; θ)]mj−1

×
δj−1∏
k=1

[1 − F (Uk; θ)]m

 . · · · · · · · (1)

All the test results are expressed by U1, 4U and
{(δj ,mj)}n

j=1 As seen in (1), each result (discharge or
withstand) in voltage stress applications is dealt with
statistically independently. This method has been pro-
posed for non-self-restoring insulation (3)∼(8).

Electrical engineers sometimes employ the sample
mean and the sample standard deviation as estimates
of the mean parameter and the standard deviation pa-
rameter for a normal distribution. This approach has
been criticized in the papers (3) (5), in which the authors
claim that the approach is incorrect and insist that the
likelihood analysis via (1) is necessary (3) (5). However,
in this paper, we argue that the method commonly em-
ployed by electrical engineers is in fact correct, for the
following reasons.

In order to see the reasons, let us consider the follow-
ing likelihood function:

L =
n∏

j=1

f(Ũj ; θ), · · · · · · · · · · · · · · · · · · · · · · · · · · · · (2)

where Ũj denotes the voltage level at which a disrup-
tive discharge occurs and f(Ũ ; θ) denotes the discharge
probability density function. In (2), note that only volt-
age levels Ũj ’s at which disruptive discharges occur are
dealt with statistically independently and the other volt-
age levels Ui’s before disruptive discharges occur do not
appear in (2). In other words, disruptive discharge volt-
ages on test objects are expressed by a independent ran-
dom variable Ũ , and Ũj corresponds to the disruptive
discharge voltage of the jth test object.

When a normal distribution is assumed, that is,

f(Ũ ; θ) = exp[−(Ũ − µ)2/2σ2]/
√

2πσ

in (2), the maximum likelihood (ML) estimates of the
parameters µ and σ are the sample mean and the sample
standard deviation. Hence, the difference between the
step-up method and the engineers’ estimation method
is the assumption of statistical independence. In a non-
self-restoring specimen like solid insulation, it is hard to
accept that the voltage at which a disruptive discharge
occurs can vary entirely independently of the specimen
itself for every voltage stress application. The voltage
could rather depend on the specimen itself. For non-self-
restoring specimens, thus, the engineers’ assumption is
more natural than that in the step-up method.

In addition, it should be noted that, in the papers
(3) (5), the superiority of the step-up method is indicated
by using data simulated under the assumption of sta-
tistical independence in the step-up method. Under the
assumption, the probability that a disruptive discharge
does not occur before the k0th voltage level, is

k0−1∏
k=1

[1 − F (Uk; θ)]m,

which goes to 0 as k0 → ∞. Thus, by noting that k0

such that Uk0 > u for a u > U1 becomes larger as 4U
becomes smaller, we can see that the statement “the
smaller the 4U1, the smaller the distribution of U4j ”

(5)

comes from the assumption.
2.2 Up-and-down method The up-and-down

50% disruptive discharge voltage test is defined as fol-
lows (1, p. 91) (2, p. 118).

i) Decide the first voltage level U1, a relatively
small value 4U and the total number N of volt-
age stress applications.

ii) When a voltage stress is applied at the voltage
level U1, and no disruptive discharge occurs, set
the next voltage level U2 at U1 +4U . If it occurs,
set that at U1 −4U .

iii) Perform similar tests at the succeeding voltage
levels U2, U3, ..., UN .

The likelihood function for the test is given as fol-
lows (1, p. 99) (2, p. 122). Denote by di the number of dis-
charges found in a voltage application at a voltage level
Ui. Since di = 1 or 0, the number of withstands is given
by 1 − di at Ui. Hence, the likelihood function L be-
comes:

L =
N∏

i=1

[F (Ui;θ)]di [1 − F (Ui; θ)]1−di . · · · · · · · · (3)

All the test results are expressed by U1, 4U and {di}N
i=1.

As seen in (3), each result di in voltage stress applica-
tions is dealt with statistically independently. Now, we
can see that the assumption of statistical independence
is the same as that in the step-up method and the differ-
ence between the up-and-down method and the step-up
method is only the way of obtaining data. Hence, by
remembering that the ML methods permit estimation
of any statistical quantities once the value of θ has been
determined, we can say that the up-and-down method
and the step-up method are competitors each other in
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obtaining good estimate of θ. Eventually, since the up-
and-down method is well-known as a method for self-
restoring insulation, we can see that the step-up method
is a method for self-restoring specimens rather than for
non-self-restoring specimens.

Up to this subsection, we have introduced the meth-
ods that deal with censored data only. That is, all the
information they use is whether a disruptive discharge
occurs at a voltage level or not. Censored data are a
kind of incomplete data (10, p. 24). In the next two sub-
sections, let us introduce methods dealing with observa-
tion values, which are called complete data. As said in
Section 1, the recent improvement of voltage measuring
instruments has made these methods available.

2.3 New step-up method The new step-up
method is a counterpart of the step-up method that
deals with complete data. In the test procedures, the
difference between them is only whether a voltage, say
uj , at the moment when a disruptive discharge occurs is
supposed to be recorded or not.

The likelihood function is given as follows (5)∼(8):

L =
n∏

j=1

f(uj ;θ)[1 − F (Uδj
; θ)]mj−1

×
δj−1∏
k=1

[1 − F (Uk;θ)]m

 . · · · · · · · · (4)

All the test results are expressed by 4U and
{(δj ,mj , uj)}n

j=1.
2.4 New up-and-down method The new up-

and-down method is a counterpart of the up-and-down
method that deals with complete data. In the test pro-
cedures, the difference between them is the same as the
difference between the step-up method and the new step-
up method.

The likelihood function is given as follows (9):

L =
N∏

i=1

[f(ui;θ)]di [1 − F (Ui; θ)]1−di . · · · · · · · · (5)

2.5 Remarks on methods In the papers (5)∼(9),
it is reported that the new step-up method and the
new up-and-down method give more precise estimation
than that by the step-up method and the up-and-down
method, respectively. This is one of the virtues of in-
cluding complete data. These methods, however, have
a technical problem that is not resolved. A disruptive
discharge causes a rapid collapse on an impulse voltage
to zero or nearly to zero. The collapse can occur before
or after the peak of the impulse voltage. Let us call the
former or latter case a disruptive discharge on the front
or tail of the impulse, respectively, (1, pp. 119-120). For ex-
ample, Figure 1 or 2 shows a disruptive discharge on the
front or tail of an impulse. These collapses are differ-
ent phenomenon. Although it is not clearly understood
which voltage should be used as a voltage datum for a
disruptive discharge when it occurs on the tail of an im-
pulse, some voltage is used as a complete datum in the
methods (5) (9). (For example, the peak voltage is used

Fig. 1. Disruptive discharge on the front.

Fig. 2. Disruptive discharge on the tail.

in the paper (5).) This defect will be removed by some
modified methods in Section 4.

The up-and-down method has been proposed by
Dixon and Mood (11) and they have given the following
explanation concerning U1: if U1 is poorly chosen, the
early observations from U1 to some Ui will be spent in
getting from U1 to the region of the mean; they will ob-
viously contribute little to the more precise location of
the mean. According to this, the step-up method seems
to be inferior to the up-and-down method. In the next
section we will see that it is not always true.

3. Comparison of methods

We first show the asymptotic errors of parameter es-
timators in the step-up method and the up-and-down
method, and second investigate how many times an ex-
perimenter needs to test to obtain good estimates whose
errors are close to the asymptotic errors. In the sequel
the discharge probability distribution is supposed to be
a normal distribution with mean µ and standard devia-
tion σ.

3.1 Asymptotic unit errors We define the
asymptotic unit errors of the ML estimators of µ and
σ by [n(I−1)11]1/2 and [n(I−1)22]1/2, where I stands
for the Fisher information matrix. In order to seek the
matrix in the step-up method, let us rewrite (1). De-
note by λi and νi the total numbers of discharges and
withstands in the voltage applications at a voltage level
Ui, respectively. These are expressed by

λi =
n∑

j=1

Ii(δj),

νi =
n∑

j=1

(
mĨi(δj) + (mj − 1)Ii(δj)

)
,

where Ii(k) def= 1 if i = k or 0 otherwise, and Ĩi(k) def= 1
if i < k or 0 otherwise. By utilizing these expressions,
we can obtain
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Fig. 3. Asymptotic unit errors of the step-up method or the up-and-down method.
(Solid lines: Case A; dotted lines: Case B.)
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ēs(µ); n = 20
XXXzHHHHj

0 0.5 1 1.5 2
DU �Σ

0

0.5

1

1.5

2

e s
HΣL,e��

sHΣL
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Fig. 4. Empirical or asymptotic unit errors of the step-up method.
(Solid lines: Case A; dotted lines: Case B.)

L =
∏
i≥1

[F (Ui;µ, σ)]λi [1 − F (Ui;µ, σ)]νi · · · · · · (6)
from (1). Now, let us seek the Fisher information matrix
for (6). Denote F (Ui; µ, σ), 1−pi and

∏i
k=1 qm

k by pi, qi

and ri, respectively. In addition, introduce the following
symbols:

xi
def= (Ui − µ)/σ, zi

def=
1√
2π

exp
(
−x2

i

2

)
,

Ai
def=

[
1 xi

xi x2
i

]
.

From (6) the Fisher information matrix in the step-up
method becomes:

I =
n

σ2

∑
i≥1

ri−1

(
m−1∑
k=0

qk
i

)
z2
i

piqi
Ai · · · · · · · · · · · · (7)

since the expectations E[λi] and E[νi] are expressed by

n∑
j=1

(
ri−1

m−1∑
k=0

qk
i pi

)
= nri−1(1 − qm

i ) · · · · · · · · (8)

and
n∑

j=1

(
mri + ri−1

m−1∑
k=0

kqk
i pi

)
= nri−1

m∑
k=1

qk
i , · (9)

respectively.
From (3) the Fisher information matrix in the up-and-

down method becomes:

I =
1
σ2

N∑
i=1

i∑
k=−i

P [Īi(k) = 1]
z2
k

pkqk
Ak, · · · · · · · (10)

where Īi(k) def= 1 if Ui = U1 + k4U or 0 otherwise (12).
In the step-up method, let es(µ) be the asymptotic

unit error of the ML estimator of µ and es(σ) that of σ.
Similarly, let us denote by eu(µ) and eu(σ) the asymp-
totic unit errors of the ML estimators in the up-and-
down method.

Suppose that µ = 0 and σ = 1. We investigate the
two cases, Case A: the mean falls on a voltage level and
Case B: the mean is midway between two voltage levels.

In the step-up method, U1 needs to be sufficiently low.
When U1 ≤ µ − 3.5σ and m = 1, each graph of es(µ)
and es(σ) in the interval of 4U/σ from 0.2 to 4 keeps
the same shape in each case. For this, we set m = 1 and
U1 = maxi(µ − i4U) or maxi(µ − (i + 0.5)4U) under
the condition that U1 ≤ µ − 3.5σ.

On the other hand, in the up-and-down method, U1

does not need to be low, but it rather needs to be close
to µ. For this, let us suppose U1 = maxi(µ − i4U)
or maxi(µ − (i + 0.5)4U) under the condition that
U1 ≤ µ − σ. Then, each graph of eu(µ) and eu(σ) also
keeps almost the same shape if N ≥ 40. This means that
the sample size 40 is large enough for us to know how
the errors asymptotically behave in the up-and-down
method. Thus, we set N = 40.

We show es(µ), eu(µ), es(σ) and eu(σ) in Figure
3. The thick or normal lines correspond to the step-
up method or the up-and-down method, respectively.
Throughout the present paper, the solid or dotted lines
correspond to Case A or B, respectively. The figure
tells us that the step-up method is quite superior to the
up-and-down method in the asymptotic unit errors. Es-
pecially, it is remarkable that es(µ) and es(σ) are small,
and in the interval of 4U/σ from 0.2 to 1.8, each of
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Table 1. Average number of voltage stress
applications.

4U/σ 0.4 0.8 1.2 1.6 2.0

Case A 9.0 5.1 4.4 3.4 2.5

Case B 7.5 4.6 3.9 2.9 3.0

them is almost the same in Cases A and B.
3.2 Evaluation in small samples We have

seen that the step-up method can provide asymptoti-
cally good estimations in the interval [0.2, 1.8]. This is
not, however, sufficient to approve the performance of
the method. In this subsection, let us evaluate it in
small samples by means of Monte Carlo simulation.

We define the empirical unit error of an ML estimator
by n1/2 times its root mean square error, and denote the
empirical unit errors of µ and σ in the step-up method
by ēs(µ) and ēs(σ). When n = 20 or 80, 10000 sets
of independent pseudo-random samples were considered
for each value of 4U/σ(= 0.2, 0.3, . . . , 2.0).

Figure 4 gives ēs(µ) and ēs(σ) for n = 20, 80 as well
as es(µ) and es(σ) for comparison. The thick lines cor-
respond to the asymptotical unit errors, and normal or
gray lines correspond to the empirical unit errors for
n = 20 or 80, respectively. From the figure we can see
the following: when n = 20, the empirical unit errors go
away from the asymptotic unit errors as 4U/σ becomes
close to 2; when n = 80, the empirical unit errors are
almost the same as the asymptotic unit errors except
ēs(σ) in Case A.

Next, let us seek the average of the number of volt-
age stress applications necessary to obtain one disrup-
tive discharge. By adding (8) and (9), substituting n = 1
into it and taking a summation over possible values of
i, we obtain the average:

∑
i≥1 ri−1(

∑m−1
k=0 qk

i ). Table
1 shows its values when m = 1. From the table, for
example, we can see that it may be necessary to apply
voltage stresses 272 times when n = 80 and 4U/σ = 1.6
in Case A. (Note that the number n = 80 comes from
the last sentence in the previous paragraph.)

Summarizing what we have seen in this section, we
can say the following:

• The step-up method is superior to the up-and-down
method in the asymptotic unit errors. This is a new
finding, which is different from the explanation con-
cerning U1 in the paper (11). (For details, remember
the last paragraph in Subsection 2.4.)

• In order to attain the empirical unit errors as small
as the asymptotic unit errors, however, the step-up
method requires a much larger number of voltage
stress applications than the up-and-down method
does. This is also a new finding, which has not been
shown in the papers (3) (5).

4. Modified methods

In Section 2, we have seen that the new step-up
method and the new up-and-down method contain the
technical problem. To avoid it, let us consider new other
methods that use a disruptive discharge voltage as a
complete datum only if a disruptive discharge occurs on
the front of an impulse and that deal with disruptive dis-

charges on the tails in the same way as the up-and-down
method does. That is, these methods use a censored da-
tum if a disruptive discharge occurs on the tail. We call
them the modified step-up method and the modified up-
and-down method.

4.1 Asymptotic unit errors First, we seek the
likelihood function and the Fisher information matrix
in the modified step-up method. For the jth disruptive
discharge (1 ≤ j ≤ n), define

τj
def=

{
1 (it occurs on the tail),
0 (it occurs on the front).

The likelihood function becomes:

L =
n∏

j=1

[F (Uδj ;θ)]τj [f(uj ; θ)]1−τj

×[1 − F (Uδj ;θ)]mj−1

δj−1∏
k=1

[1 − F (Uk; θ)]m

 .

As in Subsection 3.1, this can be rewritten into

L =
∏
i≥1


n∏

j=1

[
[F (Uδj ; µ, σ)]τj [f(uj ; µ, σ)]1−τj

]Ii(δj)

× [1 − F (Ui; µ, σ)]νi

 . · · · · · · · · · · · ·(11)

For ease of analysis, let us suppose that disruptive dis-
charges occur on the tails independently of voltage stress
levels. Then, we can set

P [τj = 1|Ii(δj) = 1] = γ,

where γ is a constant. By similar calculations to those in
Subsection 3.1, from (11) the Fisher information matrix
in the modified step-up method is given as follows:

I =
n

σ2

∑
i≥1

ri−1

(
m−1∑
k=0

qk
i

)
Ci, · · · · · · · · · · · · · · (12)

where

Bi
def=

[
−xizi + pi −zi − x2

i zi

−zi − x2
i zi −xizi − x3

i zi + 2pi

]
,

Ci
def=

(
(pi + γqi)z2

i

piqi
Ai + (1 − γ)Bi

)
.

On the other hand, by similar calculations to those
in the up-and-down method and the modified step-up
method, the Fisher information matrix in the modified
up-and-down method becomes:

I =
1
σ2

N∑
i=1

i∑
k=−i

P [Īi(k) = 1]Ck. · · · · · · · · · · · · (13)

The following are remarkable:
• The expressions in the right-hand side of (7) and

(12) or (10) and (13) are the same except the dif-
ference between z2

i Ai/piqi and Ci or z2
kAk/pkqk and

Ck.
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Fig. 5. Asymptotic unit errors of the modified step-up method or the modified up-and-down method
when γ = 0.7.
(Solid lines: Case A; dotted lines: Case B.)
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Fig. 6. Empirical or asymptotic unit errors of the modified step-up method when γ = 0.7.
(Solid lines: Case A; dotted lines: Case B.)

• When γ = 1, (12) is equivalent to (7), whereas (13)
is equivalent to (10).

We denote the asymptotic unit errors of the ML esti-
mators in the modified step-up method or the modified
up-and-down method by ems(µ) and ems(σ) or emu(µ)
and emu(σ).

In addition to the setting of µ, σ, m, U1 and N in
Subsection 3.1, we set γ = 0.7. Then, Figure 5 gives
ems(µ), emu(µ), ems(σ) and emu(σ). The thick or nor-
mal lines correspond to the modified step-up method or
the modified up-and-down method, respectively. The
figure shows that the modified step-up method is supe-
rior to the modified up-and-down method in the asymp-
totic unit errors, and in the interval of 4U/σ from 0.2
to 2.0, each of ems(µ) and ems(σ) is almost the same in
Cases A and B.

By comparing Figures 3 and 5, we can see that the er-
rors in Figure 5 are smaller as a whole. This is because
more precise estimation can be given by using complete
data even only for disruptive discharges on the fronts of
impulses.

4.2 Evaluation in small samples We evaluate
the performance of the modified step-up method in small
samples by means of Monte Carlo simulation. We de-
note by ēms(µ) and ēms(σ) the empirical unit errors of
the ML estimators of µ and σ in the modified step-up
method. Under the setting that n = 20 and γ = 0.7,
10000 sets of independent pseudo-random samples were
considered for each simulation. Figure 6 shows ēms(µ)
and ēms(σ) by normal lines as well as ems(µ) and ems(σ)
by thick lines for comparison. From this we can see that
the empirical unit errors are very close to the asymp-

totic unit errors throughout the interval [0.2, 1.4]. Since
n = 20, for example, Table 1 tells us that it is nec-
essary to apply voltage stresses about 80 or 90 times
when 4U/σ = 1.2.

Compared with the step-up method, the modified
step-up method can reduce the number of voltage stress
applications necessary to attain such small empirical
unit errors. This is one of the virtues of including com-
plete data.

4.3 Concrete example We give an example to
show the difference between the up-and-down method
and the modified up-and-down method. The modified
up-and-down method is the same as the up-and-down
method in the test procedure except the following: when
a disruptive discharge occurs on the front of an impulse,
the voltage at the moment when it occurs needs to be
recorded in the modified up-and-down method. Let us
give such data in Table 2, which have been simulated
under the setting that µ = 40, σ = 1.6 and γ = 0.7.
The table shows that disruptive discharges occurred on
the front of the impulse when i = 4, 10, 13, 14, 31, 33
and 40. Each voltage ui at the moment when a dis-
ruptive discharge occurred on the front is given in the
parenthesis.

Noting that ui’s are utilized to seek the estimates of µ
and σ in the modified up-and-down method, we obtain
µ̂ = 39.7 and σ̂ = 2.09 as the ML estimates by means of
the formula in Appendix, and then obtain 0.44 and 0.48
as the estimates of the standard errors of them, respec-
tively, by [(I−1

ob )11]1/2 and [(I−1
ob )22]1/2 in Appendix. On

the other hand, noting that ui’s are not utilized in the
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up-and-down method, we obtain µ̂ = 39.5, σ̂ = 2.57 and
the estimates of the standard errors 0.56 and 0.87 in a
similar way. Here, it should be remembered that the
errors of parameter estimates in the modified up-and-
down method are less influenced by an unknown value
4U/σ than the up-and-down method. (See Figures 3
and 5.)

5. Conclusions

First, we have stated that, from the viewpoint of sta-
tistical independence, the step-up method is a method
for self-restoring insulation. Second, we have investi-
gated the performance of the step-up, the up-and-down,
the modified step-up and the modified up-and-down
methods as a method for self-restoring insulation. Our
conclusions are as follows.

• The asymptotical unit errors of the ML estima-
tors in the step-up method or the modified step-up
method are smaller than those in the up-and-down
method or the modified up-and-down method, re-
spectively. This is a merit which is obtained by
using the step-up procedure under the statistical in-
dependence of all voltage stress applications.

• In order to attain the empirical unit errors as small
as them, however, the step-up method demands a
much larger number of voltage stress applications
than 40, which is sufficient in the up-and-down
method. This disadvantage is reduced in the mod-
ified step-up method. This is one of the virtues of
including complete data. Even the method, how-
ever, still demands a larger number of voltage stress
applications than 40. That is, only in the case that
the number is allowed to be about 100, it is effective.

• The asymptotical unit errors of the ML estimators
in the modified step-up method or the modified up-
and-down method are less influenced by an unknown
value 4U/σ than those in the step-up method or the
up-and-down method. This is also one of the virtues
of including complete data.

• As shown in the papers (5) (9) (12), the asymptot-
ical unit errors in the new step-up method or the
new up-and-down method are also not influenced
so much by 4U/σ. The methods, however, have
the technical problem. That is, although it is not
clearly understood which voltage should be used as a
voltage datum for a disruptive discharge when it oc-

Table 2. Data example.

i di Ui i di Ui i di Ui i di Ui

(ui) (ui) (ui) (ui)

1 1 38.0 11 0 38.0 21 1 38.0 32 0 40.0

2 0 36.0 12 0 40.0 22 0 36.0 33 1 42.0

3 0 38.0 13 1 42.0 23 0 38.0 (40.8)

4 1 40.0 (41.7) 24 1 40.0 34 1 40.0

(37.1) 14 1 40.0 25 1 38.0 35 0 38.0

5 0 38.0 (39.0) 26 0 36.0 36 1 40.0

6 1 40.0 15 0 38.0 27 0 38.0 37 0 38.0

7 1 38.0 16 1 40.0 28 0 40.0 38 0 40.0

8 0 36.0 17 0 38.0 29 0 42.0 39 0 42.0

9 0 38.0 18 1 40.0 30 1 44.0 40 1 44.0

10 1 40.0 19 0 38.0 31 1 42.0 (38.5)

(39.6) 20 1 40.0 (39.8)

curs on the tail of an impulse, some voltage is used
as a complete datum in the methods. The modi-
fied step-up method or the modified up-and-down
method removes this defect.

• Whereas the step-up procedure requires choosing a
sufficiently low voltage level for every object as U1,
the up-and-down procedure allows us to choose it
roughly. In addition, the modified up-and-down
method makes it possible to choose 4U roughly
since the errors of the ML estimators are less sen-
sitive to its value than the up-and-down method.
Consequently, we can roughly choose U1 and 4U in
the modified up-and-down method.

Appendix

By utilizing the expectation-maximization algorithm
(10) as in the paper (12), we give an iterative formula
to get the ML estimates and a formula to calculate an
observed information matrix. Let nt, n and w denote
the number of disruptive discharges on the tails of im-
pulses, the number of disruptive discharges and the num-
ber of withstands, respectively. Of all the voltage levels
{Ui}w+n

i=1 , pick up the voltage levels {U(i)}w
i=1 for with-

stands and {U(i)}w+nt
i=w+1 for discharges on the tails. On

the other hand, of all the discharge voltages {ui}n
i=1,

pick up the discharge voltages on the fronts {u(i)}n−nt
i=1 .

Before we see formulas, we should note that each of them
has the same in both of the modified step-up method and
the modified up-and-down method. That is, whereas the
formulas give results in the modified step-up method if
data in the modified step-up method are given, they give
results in the modified up-and-down method if data in
the modified up-and-down method are given.

The iterative formula for the ML estimation is

µ(k+1) =
w + nt

w + n
µ(k) +

1
w + n

n−nt∑
i=1

u(i)

+
1

w + n

(
w∑

i=1

D
(k)
i +

w+nt∑
i=w+1

E
(k)
i

)
,

σ(k+1) =

 w + nt

w + n
[
(
σ(k)

)2 +
(
4µ

(k)
1

)2]

+
1

w + n

n−nt∑
i=1

(
u(i) − µ(k+1)

)2

+
1

w + n

[
w∑

i=1

(
U(i) + 4µ

(k)
2

)
D

(k)
i

+
w+nt∑

i=w+1

(
U(i) + 4µ

(k)
2

)
E

(k)
i

] 
1/2

,

where

D
(k)
i

def=
(
σ(k)

)2 f(U(i);µ(k), σ(k))
1 − F (U(i); µ(k), σ(k))

,

E
(k)
i

def= −
(
σ(k)

)2 f(U(i); µ(k), σ(k))
F (U(i); µ(k), σ(k))

,
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4µ
(k)
1

def= µ(k) − µ(k+1), 4µ
(k)
2

def= µ(k) − 2µ(k+1).

When µ(0) and σ(0) are properly given, the formula
provides two series of approximates {µ(k)}k≥1 and
{σ(k)}k≥1 to the ML estimates of µ and σ. One of
the good selections for µ(0) and σ(0) is a pair of the
sample mean and the sample standard deviation of
{u(i)}n−nt

i=1 ∪ {U(i)}w+nt
i=w+1.

Each element of the observed information matrix Iob

is given as follows:

(Iob)11 =
1
σ̂4

[
n−nt∑
i=1

ū2
(i) +

w∑
i=1

D2
i +

w+nt∑
i=w+1

E2
i

]
,

(Iob)12 = − 1
σ̂5

w∑
i=1

Di

[
Ū(i)(Ū(i) − Di) + σ̂2

]
− 1

σ̂5

w+nt∑
i=w+1

Ei

[
Ū(i)(Ū(i) − Ei) + σ̂2

]
,

(Iob)22 =
2(n − nt)

σ̂2

− 1
σ̂6

w∑
i=1

Ū(i)Di

[
Ū2

(i) − Ū(i)Di + σ̂2
]

− 1
σ̂6

w+nt∑
i=w+1

Ū(i)Ei

[
Ū2

(i) − Ū(i)Ei + σ̂2
]
,

where (Iob)21 = (Iob)12,

ū(i)
def= u(i) − µ̂, Di

def= σ̂2 f(U(i); µ̂, σ̂)
1 − F (U(i); µ̂, σ̂)

,

Ei
def= −σ̂2 f(U(i); µ̂, σ̂)

F (U(i); µ̂, σ̂)
, Ū(i)

def= U(i) − µ̂.

Lastly, it is also remarkable that these formulas give
results in the step-up method or the up-and-down
method if n = nt, whereas they give results in the
new step-up method or the new up-and-down method
if nt = 0.
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